As soon as you will get into pretty complex derivatives, for example, you will need to generate correlated assets for pricing purposes. Example of such derivatives can be: Basket options Rainbox options Moutain ranges (created by Société Générale) The most complex amongst these derivatives cannot be priced using closed form formulae, Monte Carlo simulations are … Continue reading How to Generate Correlated Assets and Why?

# BlackScholes

# Monte Carlo Simulations of an asset with Black & Scholes dynamic

Introduction This first and basic article will show how to simulate a security following the Black & Scholes dynamic : $latex \frac{dS_t}{S_t} = \mu dt + \sigma dB_t$ When solving this stochastic differential equation with Ito, you finally obtain: $latex S_T = S_0 e^{(\mu - \frac{\sigma ^2}{2})T + \sigma B_T}$ The browian motion $latex B_T$ … Continue reading Monte Carlo Simulations of an asset with Black & Scholes dynamic